Project

General

Profile

1
<oaf:entity xmlns:oaf="http://namespace.openaire.eu/oaf"
2
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3
	xsi:schemaLocation="http://namespace.openaire.eu/oaf ../oaf-0.3.xsd">
4
	<oaf:result>
5
		<subject classid="keyword" classname="keyword" schemeid="dnet:result_subject"
6
			schemename="dnet:result_subject">Condensed Matter - Mesoscale and Nanoscale
7
			Physics</subject>
8
		<subject classid="keyword" classname="keyword" schemeid="dnet:result_subject"
9
			schemename="dnet:result_subject">Quantum Physics</subject>
10
		<title classid="main title" classname="main title" schemeid="dnet:dataCite_title"
11
			schemename="dnet:dataCite_title">Deterministic entanglement of superconducting qubits by
12
			parity measurement and feedback</title>
13
		<dateofacceptance>2013-06-17</dateofacceptance>
14
		<resulttype classid="publication" classname="publication" schemeid="dnet:result_typologies"
15
			schemename="dnet:result_typologies"/>
16
		<language classid="eng" classname="English" schemeid="dnet:languages"
17
			schemename="dnet:languages"/>
18
		<journal issn="0028-0836" eissn="1476-4687" lissn="">Nature</journal>
19
		<description>  The stochastic evolution of quantum systems during measurement is arguably
20
			the most enigmatic feature of quantum mechanics. Measuring a quantum system
21
			typically steers it towards a classical state, destroying any initial quantum
22
			superposition and any entanglement with other quantum systems. Remarkably, the
23
			measurement of a shared property between non-interacting quantum systems can
24
			generate entanglement starting from an uncorrelated state. Of special interest
25
			in quantum computing is the parity measurement, which projects a register of
26
			quantum bits (qubits) to a state with an even or odd total number of
27
			excitations. Crucially, a parity meter must discern the two parities with high
28
			fidelity while preserving coherence between same-parity states. Despite
29
			numerous proposals for atomic, semiconducting, and superconducting qubits,
30
			realizing a parity meter creating entanglement for both even and odd
31
			measurement results has remained an outstanding challenge. We realize a
32
			time-resolved, continuous parity measurement of two superconducting qubits
33
			using the cavity in a 3D circuit quantum electrodynamics (cQED) architecture
34
			and phase-sensitive parametric amplification. Using postselection, we produce
35
			entanglement by parity measurement reaching 77% concurrence. Incorporating the
36
			parity meter in a feedback-control loop, we transform the entanglement
37
			generation from probabilistic to fully deterministic, achieving 66% fidelity to
38
			a target Bell state on demand. These realizations of a parity meter and a
39
			feedback-enabled deterministic measurement protocol provide key ingredients for
40
			active quantum error correction in the solid state.
41
		</description>
42
		<source>Nature</source>
43
		<relevantdate classid="" classname="" schemeid="" schemename=""/>
44
		<publisher/>
45
		<embargoenddate/>
46
		<fulltext/>
47
		<format/>
48
		<storagedate/>
49
		<resourcetype classid="" classname="" schemeid="" schemename=""/>
50
		<device/>
51
		<size/>
52
		<version/>
53
		<lastmetadataupdate/>
54
		<metadataversionnumber/>
55
		<originalId>10.1038/nature12513</originalId>
56
		<originalId>oai:arXiv.org:1306.4002</originalId>
57
		<collectedfrom name="ICT FP7 Publications Database"
58
			id="openaire____::c5395f36e49f9504af387102ce2aef4e"/>
59
		<collectedfrom name="arXiv.org e-Print Archive"
60
			id="opendoar____::6f4922f45568161a8cdf4ad2299f6d23"/>
61
		<pid classid="doi" classname="doi" schemeid="dnet:pid_types" schemename="dnet:pid_types"
62
			>10.1038/nature12513</pid>
63
		<pid classid="oai" classname="oai" schemeid="dnet:pid_types" schemename="dnet:pid_types"
64
			>oai:arXiv.org:1306.4002</pid>
65
		<bestlicense classid="OPEN" classname="Open Access" schemeid="dnet:access_modes"
66
			schemename="dnet:access_modes"/>
67
		<context id="EC" label="European Commission" type="funding">
68
			<category id="EC::FP7" label="SEVENTH FRAMEWORK PROGRAMME">
69
				<concept id="EC::FP7::SP1" label="SP1-Cooperation"/>
70
				<concept id="EC::FP7::SP1::ICT" label="Information and Communication Technologies"/>
71
			</category>
72
		</context>
73
		<datainfo>
74
			<inferred>true</inferred>
75
			<deletedbyinference>false</deletedbyinference>
76
			<trust>0.9</trust>
77
			<inferenceprovenance>dedup-similarity-result</inferenceprovenance>
78
			<provenanceaction classid="sysimport:dedup" classname="sysimport:dedup"
79
				schemeid="dnet:provenanceActions" schemename="dnet:provenanceActions"/>
80
		</datainfo>
81
		<rels>
82
			<rel inferred="true" trust="0.8" inferenceprovenance=""
83
				provenanceaction="sysimport:crosswalk:repository">
84
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::d260bb33b4396ab7415ba37172c08704</to>
85
				<ranking>8</ranking>
86
				<fullname>Schouten R.N.</fullname>
87
			</rel>
88
			<rel inferred="true" trust="0.8" inferenceprovenance=""
89
				provenanceaction="sysimport:crosswalk:repository">
90
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::4a4df312b07d439f20baa8c5e3c3478f</to>
91
				<ranking>7</ranking>
92
				<fullname>Lehnert K.W.</fullname>
93
			</rel>
94
			<rel inferred="true" trust="0.8" inferenceprovenance=""
95
				provenanceaction="sysimport:crosswalk:repository">
96
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::23a2062a2c28b3b186662cf162ba57c0</to>
97
				<ranking>3</ranking>
98
				<fullname>Watson C.A.</fullname>
99
			</rel>
100
			<rel inferred="true" trust="0.8" inferenceprovenance=""
101
				provenanceaction="sysimport:crosswalk:repository">
102
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::4603a400f566d1317692b8fcd13bfd17</to>
103
				<ranking>5</ranking>
104
				<fullname>Tiggelman M.J.</fullname>
105
			</rel>
106
			<rel inferred="true" trust="0.8" inferenceprovenance=""
107
				provenanceaction="sysimport:crosswalk:repository">
108
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::38ee4e36c87f2cd9432d268afb723b1a</to>
109
				<ranking>6</ranking>
110
				<fullname>Blanter Y.M.</fullname>
111
			</rel>
112
			<rel inferred="true" trust="0.8" inferenceprovenance=""
113
				provenanceaction="sysimport:crosswalk:repository">
114
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::10e6bdd3667f90c78e09fd3e7dc2665b</to>
115
				<ranking>9</ranking>
116
				<fullname>Dicarlo L.</fullname>
117
			</rel>
118
			<rel inferred="true" trust="0.8" inferenceprovenance=""
119
				provenanceaction="sysimport:crosswalk:repository">
120
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::9a489d691c64a29509b7738261cbf0ac</to>
121
				<ranking>1</ranking>
122
				<fullname>Riste D.</fullname>
123
			</rel>
124
			<rel inferred="true" trust="0.8" inferenceprovenance=""
125
				provenanceaction="sysimport:crosswalk:repository">
126
				<to class="hasAuthor" scheme="dnet:personroles" type="person">ec_fp7_ict__::09006f86d1d852616b0a452f37172007</to>
127
				<ranking>2</ranking>
128
				<fullname>Dukalski M.</fullname>
129
			</rel>
130
			<rel inferred="true" trust="0.8" inferenceprovenance=""
131
				provenanceaction="sysimport:crosswalk:repository">
132
				<to class="hasAuthor" scheme="dnet:personroles" type="person">dedup_wf_001::6fa66a4f131635e842e977a88255242f</to>
133
				<ranking>4</ranking>
134
				<fullname>Lange G</fullname>
135
			</rel>
136
			<rel inferred="true" trust="0.8" inferenceprovenance=""
137
				provenanceaction="sysimport:crosswalk:repository">
138
				<to class="isProducedBy" scheme="dnet:result_project_relations" type="project">corda_______::227ed4d9a31899e1fccdc6cddbc0df40</to>
139
				<code>600927</code>
140
				<acronym>SCALEQIT</acronym>
141
				<title>Scalable Superconducting Processors for Entangled Quantum Information
142
					Technology</title>
143
				<contracttype classid="CP" classname="Collaborative project"
144
					schemeid="ec:FP7contractTypes" schemename="ec:FP7contractTypes"/>
145
				<funding>
146
					<funder id="ec__________::EC" shortname="EC" name="European Commission"
147
						jurisdiction="EU"/>
148
					<funding_level_0 name="FP7">ec__________::EC::FP7</funding_level_0>
149
					<funding_level_1 name="SP1">ec__________::EC::FP7::SP1</funding_level_1>
150
					<funding_level_2 name="ICT">ec__________::EC::FP7::SP1::ICT</funding_level_2>
151
				</funding>
152
			</rel>
153
		</rels>
154
		<children>
155
			<result objidentifier="ec_fp7_ict__::0205c64026d46456cf503873a1117499">
156
				<title classid="main title" classname="main title" schemeid="dnet:dataCite_title"
157
					schemename="dnet:dataCite_title">Deterministic entanglement of superconducting
158
					qubits by parity measurement and feedback</title>
159
				<dateofacceptance/>
160
				<resulttype classid="publication" classname="publication"
161
					schemeid="dnet:result_typologies" schemename="dnet:result_typologies"/>
162
			</result>
163
			<result objidentifier="od________18::26e62e36dd1d283cb4bae6ea6254cef6">
164
				<title classid="main title" classname="main title" schemeid="dnet:dataCite_title"
165
					schemename="dnet:dataCite_title">Deterministic entanglement of superconducting
166
					qubits by parity measurement and feedback</title>
167
				<dateofacceptance>2013-06-17</dateofacceptance>
168
				<resulttype classid="publication" classname="publication"
169
					schemeid="dnet:result_typologies" schemename="dnet:result_typologies"/>
170
			</result>
171
			<instance id="openaire____::c5395f36e49f9504af387102ce2aef4e">
172
				<instancetype classid="0001" classname="Article"
173
					schemeid="dnet:publication_resource" schemename="dnet:publication_resource"/>
174
				<hostedby name="ICT FP7 Publications Database"
175
					id="openaire____::c5395f36e49f9504af387102ce2aef4e"/>
176
				<webresource>
177
					<url>http://dx.doi.org/10.1038/nature12513</url>
178
				</webresource>
179

    
180
			</instance>
181
			<instance id="opendoar____::6f4922f45568161a8cdf4ad2299f6d23">
182
				<instancetype classid="0001" classname="Article"
183
					schemeid="dnet:publication_resource" schemename="dnet:publication_resource"/>
184
				<hostedby name="arXiv.org e-Print Archive"
185
					id="opendoar____::6f4922f45568161a8cdf4ad2299f6d23"/>
186
				<webresource>
187
					<url>http://arxiv.org/abs/1306.4002</url>
188
				</webresource>
189

    
190
			</instance>
191

    
192
		</children>
193
	</oaf:result>
194
	<extraInfo name="result citations" typology="citations"
195
		provenance="iis::document_referencedDocuments" trust="0.9">
196
		<citations>
197
			<citation>
198
				<rawText>[1] Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R.
199
					&amp; Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable
200
					Josephson metamaterial. Nature Phys. 4, 929–931 (2008).</rawText>
201
			</citation>
202
			<citation>
203
				<rawText>[1] Ruskov, R. &amp; Korotkov, A. N. Entanglement of solid- state qubits by
204
					measurement. Phys. Rev. B 67, 241305 (2003).</rawText>
205
			</citation>
206
			<citation>
207
				<rawText>[2] Kerckhoff, J., Bouten, L., Silberfarb, A. &amp; Mabuchi, H. Physical
208
					model of continuous two-qubit parity measure- ment in a cavity-QED network.
209
					Phys. Rev. A 79, 024305 (2009).</rawText>
210
			</citation>
211
			<citation>
212
				<rawText>[2] Rist`e, D., van Leeuwen, J. G., Ku, H.-S., Lehnert, K. W. &amp;
213
					DiCarlo, L. Initialization by measurement of a superconducting quantum bit
214
					circuit. Phys. Rev. Lett. 109, 050507 (2012).</rawText>
215
			</citation>
216
			<citation>
217
				<rawText>[3] Engel, H.-A. &amp; Loss, D. Fermionic Bell-state analyzer for spin
218
					qubits. Science 309, 586–588 (2005).</rawText>
219
			</citation>
220
			<citation>
221
				<rawText>[3] Gambetta, J. et al. Qubit-photon interactions in a cavity: Measurement
222
					induced dephasing and number splitting. Phys. Rev. A 74, 15 (2006).</rawText>
223
				<id value="od________18::33525ea4ec663b67a2d0e2d4cec1f651" type="openaire" confidenceLevel="0.5836188"/>
224
			</citation>
225
			<citation>
226
				<rawText>[4] Filipp, S. et al. Two-qubit state tomography using a joint dispersive
227
					readout. Phys. Rev. Lett. 102, 200402 (2009).</rawText>
228
				<id value="od______1064::e0cca30fb69308cc31808a2cca2bbb54" type="openaire" confidenceLevel="0.5794069"/>
229
			</citation>
230
			<citation>
231
				<rawText>[4] Trauzettel, B., Jordan, A. N., Beenakker, C. W. J. &amp; Bu¨ttiker, M.
232
					Parity meter for charge qubits: An efficient quantum entangler. Phys. Rev. B 73,
233
					235331 (2006).</rawText>
234
				<id value="dedup_wf_001::5ad9a8b7f1dff3cbb732d18612d734fb" type="openaire" confidenceLevel="0.62883973"/>
235
			</citation>
236
			<citation>
237
				<rawText>[5] Houck, A. A. et al. Controlling the spontaneous emission of a
238
					superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008).</rawText>
239
				<id value="od________18::280a9dca3bb52a2fc9d3a7ee0ae29168" type="openaire" confidenceLevel="0.57993877"/>
240
			</citation>
241
			<citation>
242
				<rawText>[5] Ionicioiu, R. Entangling spins by measuring charge: A parity-gate
243
					toolbox. Phys. Rev. A 75, 032339 (2007).</rawText>
244
			</citation>
245
			<citation>
246
				<rawText>[6] Koch, J. et al. Charge-insensitive qubit design derived from the Cooper
247
					pair box. Phys. Rev. A 76, 042319 (2007).</rawText>
248
			</citation>
249
			<citation>
250
				<rawText>[6] Williams, N. S. &amp; Jordan, A. N. Entanglement genesis under
251
					continuous parity measurement. Phys. Rev. A 78, 062322 (2008).</rawText>
252
			</citation>
253
			<citation>
254
				<rawText>[7] Haack, G., Fo¨rster, H. &amp; Bu¨ttiker, M. Parity detection and
255
					entanglement with a Mach-Zehnder interferometer. Phys. Rev. B 82, 155303
256
					(2010).</rawText>
257
				<id value="od________18::1355342d993397e0da5958a58eef23dc" type="openaire" confidenceLevel="0.6203731"/>
258
			</citation>
259
			<citation>
260
				<rawText>[7] Motzoi, F., Gambetta, J. M., Rebentrost, P. &amp; Wilhelm, F. K. Simple
261
					pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett.
262
					103, 110501 (2009).</rawText>
263
				<id value="od________18::7c5867c504166b2f4070eea10a7a48a6" type="openaire" confidenceLevel="0.68554425"/>
264
			</citation>
265
			<citation>
266
				<rawText>[8] Lalumi`ere, K., Gambetta, J. M. &amp; Blais, A. Tunable joint
267
					measurements in the dispersive regime of cavity QED. Phys. Rev. A 81, 040301
268
					(2010).</rawText>
269
			</citation>
270
			<citation>
271
				<rawText>[9] Tornberg, L. &amp; Johansson, G. High-fidelity feedback- assisted parity
272
					measurement in circuit QED. Phys. Rev. A 82, 012329 (2010).</rawText>
273
				<id value="od________18::00fa856a12b870d17ce007315a8e17ab" type="openaire" confidenceLevel="0.5793401"/>
274
			</citation>
275
			<citation>
276
				<rawText>[10] Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. &amp; Schoelkopf,
277
					R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An
278
					architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).</rawText>
279
			</citation>
280
			<citation>
281
				<rawText>[11] Paik, H. et al. Observation of high coherence in Joseph- son junction
282
					qubits measured in a three-dimensional cir- cuit QED architecture. Phys. Rev.
283
					Lett. 107, 240501 (2011).</rawText>
284
			</citation>
285
			<citation>
286
				<rawText>[12] Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R.
287
					&amp; Lehnert, K. W. Amplification and squeez- ing of quantum noise with a
288
					tunable Josephson metama- terial. Nature Phys. 4, 929–931 (2008).</rawText>
289
			</citation>
290
			<citation>
291
				<rawText>[13] Nielsen, M. A. &amp; Chuang, I. L. Quantum Computation and Quantum
292
					Information (Cambridge University Press, Cambridge, 2000).</rawText>
293
			</citation>
294
			<citation>
295
				<rawText>[14] Ahn, C., Doherty, A. C. &amp; Landahl, A. J. Continuous quantum error
296
					correction via quantum feedback control. Phys. Rev. A 65, 042301
297
					(2002).</rawText>
298
			</citation>
299
			<citation>
300
				<rawText>[15] Devoret, M. H. &amp; Schoelkopf, R. J. Superconducting circuits for
301
					quantum information: An outlook. Science 339, 1169–1174 (2013).</rawText>
302
			</citation>
303
			<citation>
304
				<rawText>[16] Hatridge, M. et al. Quantum back-action of an individual
305
					variable-strength measurement. Science 339, 178–181 (2013).</rawText>
306
			</citation>
307
			<citation>
308
				<rawText>[17] Murch, K. W., Weber, S. J., Macklin, C. &amp; Sid- diqi, I. Observing
309
					single quantum trajectories of a superconducting qubit. Preprint available at
310
					http://arXiv.org/abs/1305.7270 (2013).</rawText>
311
				<id value="od________18::9bee47f190afe61517b6d19de78136c6" type="openaire" confidenceLevel="0.65078074"/>
312
			</citation>
313
			<citation>
314
				<rawText>[18] Guerlin, C. et al. Progressive field-state collapse and quantum
315
					non-demolition photon counting. Nature 448, 889–893 (2007).</rawText>
316
				<id value="dedup_wf_001::2af52d8f0a467e7e2ec6afaaf6961115" type="openaire" confidenceLevel="0.59628665"/>
317
			</citation>
318
			<citation>
319
				<rawText>[19] Beenakker, C. W. J., DiVincenzo, D. P., Emary, C. &amp; Kindermann, M.
320
					Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93,
321
					020501 (2004).</rawText>
322
				<id value="od_______202::4e0be19e3bd3064a720c70de0fd47d6f" type="openaire" confidenceLevel="0.6012081"/>
323
			</citation>
324
			<citation>
325
				<rawText>[20] Pfaff, W. et al. Demonstration of entanglement-by- measurement of
326
					solid-state qubits. Nature Phys. 9, 29–33 (2013).</rawText>
327
			</citation>
328
			<citation>
329
				<rawText>[21] Hutchison, C. L., Gambetta, J. M., Blais, A. &amp; Wilhelm, F. K.
330
					Quantum trajectory equation for multiple qubits in circuit QED: Generating
331
					entanglement by measurement. Can. J. Phys. 87, 225–231 (2009).</rawText>
332
			</citation>
333
			<citation>
334
				<rawText>[22] Filipp, S. et al. Two-qubit state tomography using a joint dispersive
335
					readout. Phys. Rev. Lett. 102, 200402 (2009).</rawText>
336
				<id value="od______1064::e0cca30fb69308cc31808a2cca2bbb54" type="openaire" confidenceLevel="0.5794069"/>
337
			</citation>
338
			<citation>
339
				<rawText>[23] Horodecki, R., Horodecki, P., Horodecki, M. &amp; Horodecki, K.
340
					Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).</rawText>
341
				<id value="od________18::26e2fc7190beead10e0bae2f4d3974a6" type="openaire" confidenceLevel="0.5385122"/>
342
			</citation>
343
			<citation>
344
				<rawText>[24] Rist`e, D., Bultink, C. C., Lehnert, K. W. &amp; DiCarlo, L. Feedback
345
					control of a solid-state qubit using high-fidelity projective measurement. Phys.
346
					Rev. Lett. 109, 240502 (2012).</rawText>
347
				<id value="od_______571::ad99466540df96cd711346a95d56ddc3" type="openaire" confidenceLevel="0.69227856"/>
348
			</citation>
349
			<citation>
350
				<rawText>[25] Furusawa, A. et al. Unconditional quantum teleporta- tion. Science
351
					282, 706–709 (1998).</rawText>
352
			</citation>
353
			<citation>
354
				<rawText>[26] Barrett, M. D. et al. Deterministic quantum teleporta- tion of atomic
355
					qubits. Nature 429, 737–739 (2004).</rawText>
356
			</citation>
357
			<citation>
358
				<rawText>[27] Riebe, M. et al. Deterministic quantum teleportation with atoms.
359
					Nature 429, 734–737 (2004).</rawText>
360
			</citation>
361
			<citation>
362
				<rawText>[28] Sherson, J. F. et al. Quantum teleportation between light and matter.
363
					Nature 443, 557–560 (2006).</rawText>
364
				<id value="od________18::e4da4fc07fa50a1aaf6930b73fdd822f" type="openaire" confidenceLevel="0.58047235"/>
365
			</citation>
366
			<citation>
367
				<rawText>[29] Krauter, H. et al. Deterministic quantum teleportation between distant
368
					atomic objects. Nat. Phys., advance on- line publication, doi:10.1038/nphys2631
369
					(2013).</rawText>
370
				<id value="dedup_wf_001::16a61fc233b7d18a8f5f65f37624a55f" type="openaire" confidenceLevel="0.5927353"/>
371
			</citation>
372
			<citation>
373
				<rawText>[30] Frisk Kockum, A., Tornberg, L. &amp; Johansson, G. Un- doing
374
					measurement-induced dephasing in circuit QED. Phys. Rev. A 85, 052318
375
					(2012).</rawText>
376
				<id value="dedup_wf_001::71f2c7fa002824c06e3b0f19951d4b8c" type="openaire" confidenceLevel="0.64357024"/>
377
			</citation>
378
			<citation>
379
				<rawText>[31] Rist`e, D., van Leeuwen, J. G., Ku, H.-S., Lehnert, K. W. &amp;
380
					DiCarlo, L. Initialization by measurement of a super- conducting quantum bit
381
					circuit. Phys. Rev. Lett. 109, 050507 (2012).</rawText>
382
				<id value="od_______571::70887d615c1790989da490f14ec9386d" type="openaire" confidenceLevel="0.60750335"/>
383
			</citation>
384
			<citation>
385
				<rawText>[32] Gambetta, J. et al. Quantum trajectory approach to circuit QED:
386
					Quantum jumps and the Zeno effect. Phys. Rev. A 77, 012112 (2008).</rawText>
387
			</citation>
388
		</citations>
389
	</extraInfo>
390
</oaf:entity>
(20-20/29)