Project

General

Profile

1
from json import JSONEncoder
2
from elasticsearch import Elasticsearch
3
from elasticsearch_dsl import *
4

    
5
import os
6
from os import path
7

    
8

    
9
def get_property():
10

    
11

    
12
    f = open(path.join(os.path.dirname(os.path.realpath(__file__)), '../../api.properties'))
13
    p = {}
14
    for line in f:
15
        data = line.strip().split("=")
16
        p[data[0].strip()] = data[1].strip()
17
    return p
18

    
19

    
20
def create_typology_filter(value):
21
    return Q('match', typology=value)
22

    
23

    
24
def create_pid_type_filter(value):
25
    args = {'localIdentifier.type': value}
26
    return Q('nested', path='localIdentifier', query=Q('bool', must=[Q('match', **args)]))
27

    
28

    
29
def create_publisher_filter(value):
30
    return Q('match', publisher=value)
31

    
32

    
33
def create_datasource_filter(value):
34
    args = {'datasources.datasourceName': value}
35
    return Q('nested', path='datasources', query=Q('bool', must=[Q('match', **args)]))
36

    
37

    
38
class DLIESResponseEncoder(JSONEncoder):
39
    def default(self, o):
40
        return o.__dict__
41

    
42

    
43
class DLIESResponse(object):
44
    def __init__(self, facet=None, total=0, hits=[]):
45
        if facet is None:
46
            facet = dict(pid=[], typology=[], datasource=[])
47
        self.facet = facet
48
        self.total = total
49
        self.hits = hits
50

    
51

    
52
class DLIESConnector(object):
53
    def __init__(self):
54
        props = get_property()
55
        self.index_host = [x.strip() for x in props['es_index'].split(',')]
56
        self.client = Elasticsearch(hosts=self.index_host)
57
        self.index_name = props['api.index']
58

    
59
    def simple_query(self, textual_query, start=None, end=None, user_filter=None):
60
        s = Search(using=self.client, index=self.index_name).doc_type('object')
61
        q = Q('match', _all=textual_query)
62
        s.aggs.bucket('typologies', 'terms', field='typology')
63
        s.aggs.bucket('all_datasources', 'nested', path='datasources').bucket('all_names', 'terms',
64
                                                                              field='datasources.datasourceName')
65
        s.aggs.bucket('all_publisher', 'terms', field='publisher')
66

    
67
        filter_queries = []
68
        if user_filter is not None and len(user_filter) > 0:
69
            for f in user_filter.split('__'):
70
                filter_key = f.split('_')[0]
71
                filter_value = f.split('_')[1]
72
                if filter_key == 'typology':
73
                    filter_queries.append(create_typology_filter(filter_value))
74
                elif filter_key == 'datasource':
75
                    filter_queries.append(create_datasource_filter(filter_value))
76
                elif filter_key == 'pidtype':
77
                    filter_queries.append(create_pid_type_filter(filter_value))
78
                elif filter_key == 'publisher':
79
                    filter_queries.append(create_publisher_filter(filter_value))
80

    
81
        if len(filter_queries) > 0:
82
            s = s.query(q).filter(Q('bool', must=filter_queries))
83
        else:
84
            s = s.query(q)
85

    
86
        s.aggs.bucket('all_pids', 'nested', path='localIdentifier').bucket('all_types', 'terms',
87
                                                                           field='localIdentifier.type')
88

    
89
        if start is not None:
90
            if end is None:
91
                end = start + 10
92
            s = s[start:end]
93
        response = s.execute()
94

    
95
        hits = []
96

    
97
        for index_result in response.hits:
98
            hits.append(index_result.__dict__['_d_'])
99

    
100
        pid_types = []
101
        for tag in response.aggs.all_pids.all_types.buckets:
102
            pid_types.append(dict(key=tag.key, count=tag.doc_count))
103

    
104
        datasources = []
105
        for tag in response.aggs.all_datasources.all_names.buckets:
106
            datasources.append(dict(key=tag.key, count=tag.doc_count))
107

    
108
        typologies = []
109
        for tag in response.aggs.typologies.buckets:
110
            typologies.append(dict(key=tag.key, count=tag.doc_count))
111

    
112
        publishers = []
113
        for tag in response.aggs.all_publisher.buckets:
114
            if len(tag.key) > 0:
115
                publishers.append(dict(key=tag.key, count=tag.doc_count))
116

    
117
        return DLIESResponse(total=response.hits.total,
118
                             facet=dict(pid=pid_types, typology=typologies, datasource=datasources,
119
                                        publishers=publishers), hits=hits)
120

    
121
    def related_type(self, object_id, object_type, start=None):
122
        args = {'target.objectType': object_type}
123
        query_type = Q('nested', path='target', query=Q('bool', must=[Q('match', **args)]))
124
        args_id = {'source.dnetIdentifier': object_id}
125
        query_for_id = Q('nested', path='source', query=Q('bool', must=[Q('match', **args_id)]))
126
        s = Search(using=self.client).index(self.index_name).doc_type('scholix').query(query_for_id & query_type)
127
        if start:
128
            s = s[start:start + 10]
129

    
130
        response = s.execute()
131
        hits = []
132

    
133
        for index_hit in response.hits:
134
            hits.append(index_hit.__dict__['_d_'])
135

    
136
        return hits
137

    
138
    def fix_collectedFrom(self, source, relation):
139
        relSource = relation.get('source')
140
        collectedFrom = relSource['collectedFrom']
141
        for coll in collectedFrom:
142
            for d in source['datasources']:
143
                if d['datasourceName'] == coll['provider']['name']:
144
                    d['provisionMode'] = coll['provisionMode']
145
        return source
146

    
147
    def item_by_id(self, id, type=None, start=None):
148
        try:
149
            res = self.client.get(index=self.index_name, doc_type='object', id=id)
150
            hits = []
151
            input_source = res['_source']
152
            related_publications = []
153
            related_dataset = []
154
            related_unknown = []
155

    
156
            rel_source = None
157
            if input_source.get('relatedPublications') > 0:
158
                if 'publication' == type:
159
                    related_publications = self.related_type(id, 'publication', start)
160
                else:
161
                    related_publications = self.related_type(id, 'publication')
162
                rel_source = related_publications[0]
163
            if input_source.get('relatedDatasets') > 0:
164
                if 'dataset' == type:
165
                    related_dataset = self.related_type(id, 'dataset', start)
166
                else:
167
                    related_dataset = self.related_type(id, 'dataset')
168
                rel_source = related_dataset[0]
169
            if input_source.get('relatedUnknown') > 0:
170
                if 'unknown' == type:
171
                    related_unknown = self.related_type(id, 'unknown', start)
172
                else:
173
                    related_unknown = self.related_type(id, 'unknown')
174
                rel_source = related_unknown[0]
175

    
176
            input_source = self.fix_collectedFrom(input_source, rel_source)
177
            hits.append(input_source)
178

    
179
            hits.append(dict(related_publications=related_publications, related_dataset=related_dataset,
180
                             related_unknown=related_unknown))
181

    
182
            return DLIESResponse(total=1, hits=hits)
183
        except Exception as e:
184
            print "Error on getting item"
185
            print e
186
            return DLIESResponse()
(2-2/2)