Project

General

Profile

1 53322 alessia.ba
<oaf:result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:oaf="http://namespace.openaire.eu/oaf"
2
      xsi:schemaLocation="http://namespace.openaire.eu/oaf ../oaf-publication-1.1.xsd">
3
      <oaf:subject type="keyword">Condensed Matter - Mesoscale and Nanoscale
4
			Physics</oaf:subject>
5
      <oaf:subject type="keyword">Quantum Physics</oaf:subject>
6
      <oaf:title>Deterministic entanglement of superconducting qubits by
7
			parity measurement and feedback</oaf:title>
8
      <oaf:dateofacceptance>2013-06-17</oaf:dateofacceptance>
9
      <oaf:resulttype>publication</oaf:resulttype>
10
      <oaf:language code="eng">English</oaf:language>
11
      <oaf:journal issn="0028-0836" eissn="1476-4687" lissn="">Nature</oaf:journal>
12
      <oaf:description>  The stochastic evolution of quantum systems during measurement is arguably
13
			the most enigmatic feature of quantum mechanics. Measuring a quantum system
14
			typically steers it towards a classical state, destroying any initial quantum
15
			superposition and any entanglement with other quantum systems. Remarkably, the
16
			measurement of a shared property between non-interacting quantum systems can
17
			generate entanglement starting from an uncorrelated state. Of special interest
18
			in quantum computing is the parity measurement, which projects a register of
19
			quantum bits (qubits) to a state with an even or odd total number of
20
			excitations. Crucially, a parity meter must discern the two parities with high
21
			fidelity while preserving coherence between same-parity states. Despite
22
			numerous proposals for atomic, semiconducting, and superconducting qubits,
23
			realizing a parity meter creating entanglement for both even and odd
24
			measurement results has remained an outstanding challenge. We realize a
25
			time-resolved, continuous parity measurement of two superconducting qubits
26
			using the cavity in a 3D circuit quantum electrodynamics (cQED) architecture
27
			and phase-sensitive parametric amplification. Using postselection, we produce
28
			entanglement by parity measurement reaching 77% concurrence. Incorporating the
29
			parity meter in a feedback-control loop, we transform the entanglement
30
			generation from probabilistic to fully deterministic, achieving 66% fidelity to
31
			a target Bell state on demand. These realizations of a parity meter and a
32
			feedback-enabled deterministic measurement protocol provide key ingredients for
33
			active quantum error correction in the solid state.
34
		</oaf:description>
35
      <oaf:source>Nature</oaf:source>
36
      <oaf:publisher/>
37
      <oaf:embargoenddate/>
38
      <oaf:originalId>10.1038/nature12513</oaf:originalId>
39
      <oaf:originalId>oai:arXiv.org:1306.4002</oaf:originalId>
40
      <oaf:collectedfrom name="ICT FP7 Publications Database"
41
                         id="openaire____::c5395f36e49f9504af387102ce2aef4e"/>
42
      <oaf:collectedfrom name="arXiv.org e-Print Archive"
43
                         id="opendoar____::6f4922f45568161a8cdf4ad2299f6d23"/>
44
      <oaf:pid type="doi">10.1038/nature12513</oaf:pid>
45
      <oaf:pid type="oai">oai:arXiv.org:1306.4002</oaf:pid>
46
      <oaf:bestaccessrights code="OPEN">Open Access</oaf:bestaccessrights>
47
      <oaf:rels>
48
         <oaf:rel inferred="false"
49
            provenance="sysimport:crosswalk:repository" semantics="hasAuthor">
50
            <oaf:target type="person" id="ec_fp7_ict__::d260bb33b4396ab7415ba37172c08704">
51
               <oaf:ranking>8</oaf:ranking>
52
               <oaf:fullname>Schouten R.N.</oaf:fullname>
53
            </oaf:target>
54
         </oaf:rel>
55
         <oaf:rel inferred="true" semantics="isProducedBy"
56
                 provenance="sysimport:crosswalk:repository">
57
            <oaf:target type="project" id="corda_______::227ed4d9a31899e1fccdc6cddbc0df40">
58
            <oaf:code>600927</oaf:code>
59
            <oaf:acronym>SCALEQIT</oaf:acronym>
60
            <oaf:projecttitle>Scalable Superconducting Processors for Entangled Quantum Information
61
					Technology</oaf:projecttitle>
62
            <oaf:contracttype code="CP">Collaborative project</oaf:contracttype>
63
            <oaf:funding>
64
               <oaf:funder id="ec__________::EC"
65
                           shortname="EC"
66
                           name="European Commission"
67
                           jurisdiction="EU"/>
68
               <oaf:funding_level_0 name="FP7">ec__________::EC::FP7</oaf:funding_level_0>
69
               <oaf:funding_level_1 name="SP1">ec__________::EC::FP7::SP1</oaf:funding_level_1>
70
               <oaf:funding_level_2 name="ICT">ec__________::EC::FP7::SP1::ICT</oaf:funding_level_2>
71
            </oaf:funding>
72
            </oaf:target>
73
         </oaf:rel>
74
      </oaf:rels>
75
      <oaf:instances>
76
         <oaf:instance>
77
            <oaf:instancetype>Article</oaf:instancetype>
78
            <oaf:hostedby name="ICT FP7 Publications Database"
79
                          id="openaire____::c5395f36e49f9504af387102ce2aef4e"/>
80
            <oaf:webresource>
81
               <oaf:url>http://dx.doi.org/10.1038/nature12513</oaf:url>
82
            </oaf:webresource>
83
         </oaf:instance>
84
         <oaf:instance>
85
            <oaf:instancetype>Article</oaf:instancetype>
86
            <oaf:hostedby name="arXiv.org e-Print Archive"
87
                          id="opendoar____::6f4922f45568161a8cdf4ad2299f6d23"/>
88
            <oaf:webresource>
89
               <oaf:url>http://arxiv.org/abs/1306.4002</oaf:url>
90
            </oaf:webresource>
91
         </oaf:instance>
92
      </oaf:instances>
93
      <oaf:citations provenance="iis::document_referencedDocuments" trust="0.9">
94
         <oaf:citation>
95
            <oaf:rawText>[1] Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R.
96
					&amp; Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable
97
					Josephson metamaterial. Nature Phys. 4, 929–931 (2008).</oaf:rawText>
98
         </oaf:citation>
99
         <oaf:citation>
100
            <oaf:rawText>[1] Ruskov, R. &amp; Korotkov, A. N. Entanglement of solid- state qubits by
101
					measurement. Phys. Rev. B 67, 241305 (2003).</oaf:rawText>
102
         </oaf:citation>
103
         <oaf:citation>
104
            <oaf:rawText>[2] Kerckhoff, J., Bouten, L., Silberfarb, A. &amp; Mabuchi, H. Physical
105
					model of continuous two-qubit parity measure- ment in a cavity-QED network.
106
					Phys. Rev. A 79, 024305 (2009).</oaf:rawText>
107
         </oaf:citation>
108
         <oaf:citation>
109
            <oaf:rawText>[2] Rist`e, D., van Leeuwen, J. G., Ku, H.-S., Lehnert, K. W. &amp;
110
					DiCarlo, L. Initialization by measurement of a superconducting quantum bit
111
					circuit. Phys. Rev. Lett. 109, 050507 (2012).</oaf:rawText>
112
         </oaf:citation>
113
         <oaf:citation>
114
            <oaf:rawText>[3] Engel, H.-A. &amp; Loss, D. Fermionic Bell-state analyzer for spin
115
					qubits. Science 309, 586–588 (2005).</oaf:rawText>
116
         </oaf:citation>
117
         <oaf:citation>
118
            <oaf:rawText>[3] Gambetta, J. et al. Qubit-photon interactions in a cavity: Measurement
119
					induced dephasing and number splitting. Phys. Rev. A 74, 15 (2006).</oaf:rawText>
120
            <oaf:id value="od________18::33525ea4ec663b67a2d0e2d4cec1f651"
121
                    type="openaire"
122
                    confidenceLevel="0.5836188"/>
123
         </oaf:citation>
124
         <oaf:citation>
125
            <oaf:rawText>[4] Filipp, S. et al. Two-qubit state tomography using a joint dispersive
126
					readout. Phys. Rev. Lett. 102, 200402 (2009).</oaf:rawText>
127
            <oaf:id value="od______1064::e0cca30fb69308cc31808a2cca2bbb54"
128
                    type="openaire"
129
                    confidenceLevel="0.5794069"/>
130
         </oaf:citation>
131
         <oaf:citation>
132
            <oaf:rawText>[4] Trauzettel, B., Jordan, A. N., Beenakker, C. W. J. &amp; Bu¨ttiker, M.
133
					Parity meter for charge qubits: An efficient quantum entangler. Phys. Rev. B 73,
134
					235331 (2006).</oaf:rawText>
135
            <oaf:id value="dedup_wf_001::5ad9a8b7f1dff3cbb732d18612d734fb"
136
                    type="openaire"
137
                    confidenceLevel="0.62883973"/>
138
         </oaf:citation>
139
         <oaf:citation>
140
            <oaf:rawText>[5] Houck, A. A. et al. Controlling the spontaneous emission of a
141
					superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008).</oaf:rawText>
142
            <oaf:id value="od________18::280a9dca3bb52a2fc9d3a7ee0ae29168"
143
                    type="openaire"
144
                    confidenceLevel="0.57993877"/>
145
         </oaf:citation>
146
         <oaf:citation>
147
            <oaf:rawText>[5] Ionicioiu, R. Entangling spins by measuring charge: A parity-gate
148
					toolbox. Phys. Rev. A 75, 032339 (2007).</oaf:rawText>
149
         </oaf:citation>
150
         <oaf:citation>
151
            <oaf:rawText>[6] Koch, J. et al. Charge-insensitive qubit design derived from the Cooper
152
					pair box. Phys. Rev. A 76, 042319 (2007).</oaf:rawText>
153
         </oaf:citation>
154
         <oaf:citation>
155
            <oaf:rawText>[6] Williams, N. S. &amp; Jordan, A. N. Entanglement genesis under
156
					continuous parity measurement. Phys. Rev. A 78, 062322 (2008).</oaf:rawText>
157
         </oaf:citation>
158
         <oaf:citation>
159
            <oaf:rawText>[7] Haack, G., Fo¨rster, H. &amp; Bu¨ttiker, M. Parity detection and
160
					entanglement with a Mach-Zehnder interferometer. Phys. Rev. B 82, 155303
161
					(2010).</oaf:rawText>
162
            <oaf:id value="od________18::1355342d993397e0da5958a58eef23dc"
163
                    type="openaire"
164
                    confidenceLevel="0.6203731"/>
165
         </oaf:citation>
166
         <oaf:citation>
167
            <oaf:rawText>[7] Motzoi, F., Gambetta, J. M., Rebentrost, P. &amp; Wilhelm, F. K. Simple
168
					pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett.
169
					103, 110501 (2009).</oaf:rawText>
170
            <oaf:id value="od________18::7c5867c504166b2f4070eea10a7a48a6"
171
                    type="openaire"
172
                    confidenceLevel="0.68554425"/>
173
         </oaf:citation>
174
         <oaf:citation>
175
            <oaf:rawText>[8] Lalumi`ere, K., Gambetta, J. M. &amp; Blais, A. Tunable joint
176
					measurements in the dispersive regime of cavity QED. Phys. Rev. A 81, 040301
177
					(2010).</oaf:rawText>
178
         </oaf:citation>
179
         <oaf:citation>
180
            <oaf:rawText>[9] Tornberg, L. &amp; Johansson, G. High-fidelity feedback- assisted parity
181
					measurement in circuit QED. Phys. Rev. A 82, 012329 (2010).</oaf:rawText>
182
            <oaf:id value="od________18::00fa856a12b870d17ce007315a8e17ab"
183
                    type="openaire"
184
                    confidenceLevel="0.5793401"/>
185
         </oaf:citation>
186
         <oaf:citation>
187
            <oaf:rawText>[10] Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. &amp; Schoelkopf,
188
					R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An
189
					architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).</oaf:rawText>
190
         </oaf:citation>
191
         <oaf:citation>
192
            <oaf:rawText>[11] Paik, H. et al. Observation of high coherence in Joseph- son junction
193
					qubits measured in a three-dimensional cir- cuit QED architecture. Phys. Rev.
194
					Lett. 107, 240501 (2011).</oaf:rawText>
195
         </oaf:citation>
196
         <oaf:citation>
197
            <oaf:rawText>[12] Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R.
198
					&amp; Lehnert, K. W. Amplification and squeez- ing of quantum noise with a
199
					tunable Josephson metama- terial. Nature Phys. 4, 929–931 (2008).</oaf:rawText>
200
         </oaf:citation>
201
         <oaf:citation>
202
            <oaf:rawText>[13] Nielsen, M. A. &amp; Chuang, I. L. Quantum Computation and Quantum
203
					Information (Cambridge University Press, Cambridge, 2000).</oaf:rawText>
204
         </oaf:citation>
205
         <oaf:citation>
206
            <oaf:rawText>[14] Ahn, C., Doherty, A. C. &amp; Landahl, A. J. Continuous quantum error
207
					correction via quantum feedback control. Phys. Rev. A 65, 042301
208
					(2002).</oaf:rawText>
209
         </oaf:citation>
210
         <oaf:citation>
211
            <oaf:rawText>[15] Devoret, M. H. &amp; Schoelkopf, R. J. Superconducting circuits for
212
					quantum information: An outlook. Science 339, 1169–1174 (2013).</oaf:rawText>
213
         </oaf:citation>
214
         <oaf:citation>
215
            <oaf:rawText>[16] Hatridge, M. et al. Quantum back-action of an individual
216
					variable-strength measurement. Science 339, 178–181 (2013).</oaf:rawText>
217
         </oaf:citation>
218
         <oaf:citation>
219
            <oaf:rawText>[17] Murch, K. W., Weber, S. J., Macklin, C. &amp; Sid- diqi, I. Observing
220
					single quantum trajectories of a superconducting qubit. Preprint available at
221
					http://arXiv.org/abs/1305.7270 (2013).</oaf:rawText>
222
            <oaf:id value="od________18::9bee47f190afe61517b6d19de78136c6"
223
                    type="openaire"
224
                    confidenceLevel="0.65078074"/>
225
         </oaf:citation>
226
         <oaf:citation>
227
            <oaf:rawText>[18] Guerlin, C. et al. Progressive field-state collapse and quantum
228
					non-demolition photon counting. Nature 448, 889–893 (2007).</oaf:rawText>
229
            <oaf:id value="dedup_wf_001::2af52d8f0a467e7e2ec6afaaf6961115"
230
                    type="openaire"
231
                    confidenceLevel="0.59628665"/>
232
         </oaf:citation>
233
         <oaf:citation>
234
            <oaf:rawText>[19] Beenakker, C. W. J., DiVincenzo, D. P., Emary, C. &amp; Kindermann, M.
235
					Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93,
236
					020501 (2004).</oaf:rawText>
237
            <oaf:id value="od_______202::4e0be19e3bd3064a720c70de0fd47d6f"
238
                    type="openaire"
239
                    confidenceLevel="0.6012081"/>
240
         </oaf:citation>
241
         <oaf:citation>
242
            <oaf:rawText>[20] Pfaff, W. et al. Demonstration of entanglement-by- measurement of
243
					solid-state qubits. Nature Phys. 9, 29–33 (2013).</oaf:rawText>
244
         </oaf:citation>
245
         <oaf:citation>
246
            <oaf:rawText>[21] Hutchison, C. L., Gambetta, J. M., Blais, A. &amp; Wilhelm, F. K.
247
					Quantum trajectory equation for multiple qubits in circuit QED: Generating
248
					entanglement by measurement. Can. J. Phys. 87, 225–231 (2009).</oaf:rawText>
249
         </oaf:citation>
250
         <oaf:citation>
251
            <oaf:rawText>[22] Filipp, S. et al. Two-qubit state tomography using a joint dispersive
252
					readout. Phys. Rev. Lett. 102, 200402 (2009).</oaf:rawText>
253
            <oaf:id value="od______1064::e0cca30fb69308cc31808a2cca2bbb54"
254
                    type="openaire"
255
                    confidenceLevel="0.5794069"/>
256
         </oaf:citation>
257
         <oaf:citation>
258
            <oaf:rawText>[23] Horodecki, R., Horodecki, P., Horodecki, M. &amp; Horodecki, K.
259
					Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).</oaf:rawText>
260
            <oaf:id value="od________18::26e2fc7190beead10e0bae2f4d3974a6"
261
                    type="openaire"
262
                    confidenceLevel="0.5385122"/>
263
         </oaf:citation>
264
         <oaf:citation>
265
            <oaf:rawText>[24] Rist`e, D., Bultink, C. C., Lehnert, K. W. &amp; DiCarlo, L. Feedback
266
					control of a solid-state qubit using high-fidelity projective measurement. Phys.
267
					Rev. Lett. 109, 240502 (2012).</oaf:rawText>
268
            <oaf:id value="od_______571::ad99466540df96cd711346a95d56ddc3"
269
                    type="openaire"
270
                    confidenceLevel="0.69227856"/>
271
         </oaf:citation>
272
         <oaf:citation>
273
            <oaf:rawText>[25] Furusawa, A. et al. Unconditional quantum teleporta- tion. Science
274
					282, 706–709 (1998).</oaf:rawText>
275
         </oaf:citation>
276
         <oaf:citation>
277
            <oaf:rawText>[26] Barrett, M. D. et al. Deterministic quantum teleporta- tion of atomic
278
					qubits. Nature 429, 737–739 (2004).</oaf:rawText>
279
         </oaf:citation>
280
         <oaf:citation>
281
            <oaf:rawText>[27] Riebe, M. et al. Deterministic quantum teleportation with atoms.
282
					Nature 429, 734–737 (2004).</oaf:rawText>
283
         </oaf:citation>
284
         <oaf:citation>
285
            <oaf:rawText>[28] Sherson, J. F. et al. Quantum teleportation between light and matter.
286
					Nature 443, 557–560 (2006).</oaf:rawText>
287
            <oaf:id value="od________18::e4da4fc07fa50a1aaf6930b73fdd822f"
288
                    type="openaire"
289
                    confidenceLevel="0.58047235"/>
290
         </oaf:citation>
291
         <oaf:citation>
292
            <oaf:rawText>[29] Krauter, H. et al. Deterministic quantum teleportation between distant
293
					atomic objects. Nat. Phys., advance on- line publication, doi:10.1038/nphys2631
294
					(2013).</oaf:rawText>
295
            <oaf:id value="dedup_wf_001::16a61fc233b7d18a8f5f65f37624a55f"
296
                    type="openaire"
297
                    confidenceLevel="0.5927353"/>
298
         </oaf:citation>
299
         <oaf:citation>
300
            <oaf:rawText>[30] Frisk Kockum, A., Tornberg, L. &amp; Johansson, G. Un- doing
301
					measurement-induced dephasing in circuit QED. Phys. Rev. A 85, 052318
302
					(2012).</oaf:rawText>
303
            <oaf:id value="dedup_wf_001::71f2c7fa002824c06e3b0f19951d4b8c"
304
                    type="openaire"
305
                    confidenceLevel="0.64357024"/>
306
         </oaf:citation>
307
         <oaf:citation>
308
            <oaf:rawText>[31] Rist`e, D., van Leeuwen, J. G., Ku, H.-S., Lehnert, K. W. &amp;
309
					DiCarlo, L. Initialization by measurement of a super- conducting quantum bit
310
					circuit. Phys. Rev. Lett. 109, 050507 (2012).</oaf:rawText>
311
            <oaf:id value="od_______571::70887d615c1790989da490f14ec9386d"
312
                    type="openaire"
313
                    confidenceLevel="0.60750335"/>
314
         </oaf:citation>
315
         <oaf:citation>
316
            <oaf:rawText>[32] Gambetta, J. et al. Quantum trajectory approach to circuit QED:
317
					Quantum jumps and the Zeno effect. Phys. Rev. A 77, 012112 (2008).</oaf:rawText>
318
         </oaf:citation>
319
      </oaf:citations>
320
   </oaf:result>